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1 Summary  

1.1 English version 

3D imaging is studied as a potential method for automated quantification of gaping in fish fillets. A 

total of 153 haddock fillets were included in the study. The fillets were manually evaluated for gaping 

by three evaluators, each giving scores from 0 (no gaping) to 5 (extreme gaping). The fillets were 

imaged with a 3D camera, and features from the 3D images were used in a PLS regression model for 

estimation of gaping score. The model gave an R2 value of 0.56 and a root mean square error of 0.68, 

which is considered mediocre in this context. However, the accuracy of the model may be sufficient 

for classification of fillets into two classes; low-gaping samples and high-gaping samples. A possible 

improvement to the method is to perform imaging above a small “bump” in the conveyor belt, to 

better expose the gaping. With this modification, 3D imaging is seen as a promising method for 

automated, real-time quantification of gaping. 

1.2 Norsk versjon 

Rapporten beskriver en studie av 3D-avbildning som potensiell metode for automatisert kvantifisering 

av spalting i fiskefileter. 153 fileter av hyse ble brukt i studien. Filetene ble vurdert for spalting av tre 

dommere, som brukte en evalueringsskala fra 0 (ingen spalting) til 5 (ekstrem spalting). Filetene ble 

avbildet med et 3D-kamera, og ulike statistiske beskrivelser av 3D-bildene ble brukt i en PLS 

regresjonsmodell for estimering av spalting. Modellen ga en R2-verdi på 0.56 og en RMS-verdi på 0.68, 

noe som ansees som middelmådig i denne sammenhengen. Modellen kan imidlertid ha en tilstrekkelig 

nøyaktighet til å dele fileter inn i to klasser; fileter med lav og høy spalting. En mulig forbedring av 

metoden er å gjøre 3D-avbildningen over en liten «kul» på transportbåndet, for å eksponere spaltingen 

bedre. Med en slik modifisering anses 3D-avbildning som en lovende metode for automatisert 

kvantifisering av spalting i sanntid. 
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2 Introduction 

The degree of fillet gaping is one of the most important quality parameters for fish fillets, in addition 

to color (also dependent on blood content) and the presence of defects such as bones, remains of skin, 

nematodes, etc. The degree of gaping is influenced by mechanical handling of the fish and degradation 

of connective tissue, e.g. by enzymatic degradation. At Nofima, the degree of fillet gaping is manually 

evaluated based on a scale from 0 (no gaping) to 5 (extreme gaping). A set of example pictures is used 

in the evaluation (Akse et al., 2010) . Several studies have been performed that include gaping as a 

quality parameter (measured manually), but there is very little literature available on methods for 

automated quantification of gaping. 

The degree of gaping is related to the three-dimensional shape of the fillet, and various methods for 

3D shape measurement are available. The most commonly used 3D measurement method for objects 

on conveyor belts is based on illumination with a laser line and imaging with a monochrome camera. 

For each pixel in the image, triangulation can be used to calculate the object’s height above the 

conveyor belt. The laser illumination and the camera system can be integrated into a single unit, a “3D 

camera”. 3D imaging has been used to detect wounds and deformities on whole salmon (Sture et al., 

2016), but we have not found literature on 3D imaging used for quantification of gaping. 

It is possible to measure fillet gaping using other imaging techniques in addition to 3D imaging. Gaping 

creates “shadows” which are visible in ordinary 2D images of fillets. Using imaging processing 

techniques, these shadow zones can be identified, and the degree of gaping can be quantified. 

Particular types and placements of light source(s) can also be used to enhance the shadow effects 

(Balaban et al., 2011). However, in this type of imaging, an indirect effect of gaping is measured. 

Various fillet properties can cause “dark” areas in the image similar to those of gaping, for example 

blood or melanin spots. Also, it is not possible to measure the depth of each gap exactly (which is 

relevant to consider the severity of the gaping). 

X-ray imaging can also be used to estimate the thickness of the fillet. The main advantage of x-ray 

imaging is its ability to detect bones, but as the absorption of x-rays in muscle tissue is thickness 

dependent, the thickness can be estimated based on the absorption image (Mery et al., 2011). Note 

however that this is also an indirect measurement of thickness, with potential for inaccuracies. X-ray 

equipment is also quite costly and requires special attention regarding radiation safety. 

In comparison to the methods described above, a 3D camera is a relatively low-cost device that 

measures the surface shape of a fillet directly with high accuracy (typically < 0.1 mm resolution). This 

type of sensor should therefore be well suited for measuring gaping in fish fillets. The main goal of the 

study described here is to test this concept on a relatively large number of fillets, and evaluate its 

accuracy relative to manual evaluations of gaping. 

If automated measurement of gaping can be achieved with sufficient accuracy, it could easily be 

implemented in industrial systems such as those produced by Marel, Valka etc. For example, Marel 

already uses 3D imaging in portioning machines, and algorithms for gaping could probably be 

implemented directly on these machines using the same data. Another possibility for implementation 

is to use the camera “stand-alone” together with a grading system for sorting the fish.  
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3 Methods and materials 

3.1 Raw materials and manual gaping evaluation 

Haddock was fished by the fishing vessel “Ballstadøy” on May 24. at “Klakken”, approximately 4 km 

north of Vardø, Finnmark, Norway. The fish were part of another Nofima project concerning live 

storage of fish between capture and processing on land. Some of the fish were killed, gutted and iced 

directly after capture, some of the fish died in the storage tanks and were gutted and iced onboard, 

and some of the fish were processed on land in Båtsfjord on May 25. A total of 62 fish were shipped 

to Nofima, packed in styrofoam boxes with ice. These fish arrived on May 28. and were hand filleted 

before subsequent imaging and gaping evaluation. The skin was left on the fillets. Figure 1 shows an 

overview of all the fillets. For the sake of brevity, further details regarding handling of the fish are not 

given here, as the only relevant property of the fish in the current work, is the amount of gaping.  

Evaluation of gaping was performed by laying the fillets out on a table and visually comparing them to 

the images shown in Figure 2. Three evaluators, all part of the Seafood industry department at Nofima, 

gave their individual score for each fillet. The average of these three values was then used as the final 

score for each fillet. During evaluation, one of the evaluators would run his/her hand under the fillet 

to better expose  gaping.  

The evaluation results showed that the fillets had relatively little gaping, with most fillets receiving 

scores in the 1-2 range. To generate examples of fillets with higher gaping scores, 60 fillets from the 

original 124 were selected and handled (“stretching”, bending) on May 29. The fillets were then 

imaged and evaluated in the same way as on May 28.  

The distribution of gaping scores for all fillets (124 on May 28. + 60 on May 29.) is shown in Figure 3a). 

The distribution has distinct peaks at 1, 2 and 3, corresponding to cases where all three evaluators 

agreed on the same score. Scores with non-integer values (e.g. 1.33, 2.66) are mean values from cases 

where the evaluators gave slightly different scores (e.g. [1, 1, 2], [2, 3, 3]). Note that for all fillets, the 

evaluator scores never differed by more than 1. The distribution in Figure 3a) also shows a slight bias 

towards lower values. To compensate for this bias, a subset of 153 fillets was selected for use in further 

analysis. The gaping score distribution of this subset is shown in Figure 3b). 

 

 

Figure 1  Overview of all 124 fillets imaged and evaluated on May 28. 
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Figure 2  Example images used in evaluation of gaping. The corresponding gaping scores (0-5) are shown in 
the lower right part of each image. 

 

 

 
a) 

 
b) 

Figure 3  Gaping score distribution. a) All fillets, b) 153 fillets selected for a more uniform distribution.  
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3.2 3D camera set-up and specifications 

3D imaging was performed with a Gocator 2370 camera from LMI Technologies. The camera was 

mounted 53 cm above a flat conveyor belt, with the laser line pointing downwards perpendicular to 

the conveyor belt, and the camera looking down at an angle relative to the laser line. The set-up is 

shown in Figure 4. The image resolution was 0.3, 0.5 and 0.0022 mm in the x, y, and z directions, 

respectively. 

3.3 Color imaging 

A VNIR-640 hyperspectral camera from Norsk Elektro Optikk was used to image the fillets on the same 

conveyor belt used for 3D imaging. Color images were synthesized from the hyperspectral images using 

a CIE 1964 10° standard observer model and a CIE D65 daylight illumination model (see Skjelvareid et 

al., 2017 for further details). 

3.4 Image export and import 

The 3D images were saved to disk during imaging by a small program written in-house. The program is 

written in the C programming language and based on the Gocator SDK supplied by LMI Technologies. 

The files were then read and further processed in Matlab.   

 

Figure 4 3D camera mounted above conveyor belt. 
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4 Image examples 

Figure 5 shows image examples of one fillet with low gaping (score 1) and two fillets with high gaping 

(scores 4 and 4.67). Both 3D and color images are included for comparison. In the high-gaping fillets, 

the gaps can be seen as darker areas in both the 3D and color images. In the 3D images, the darker 

color corresponds to a lower height above the conveyor belt, and in the color images, the darker areas 

are caused by the gaps having a shadowing effect.  

Figure 6 shows an example of two fillets that, despite having the same gaping score, appear quite 

different. In the left fillet, gaps in the fillet are overlapping and “smoothed out” while in the right fillet 

there is a large gap clearly visible in the loin.  

During manual evaluation, the gaps in the fillets were made more clearly visible by running a hand 

underneath the fillet, but with the fillets placed flat onto the conveyor belt, some of the gaps were not 

clearly visible in the images. To illustrate this, a few fillets were placed on a section of plastic pipe (10 

cm radius) and imaged again. An example is given in Figure 7, showing how the shape of the pipe helps 

to expose the gap in the loin of the fillet. 

 

Figure 5 Examples of extremes: Fillets with low and high gaping scores. 3D images (grayscale) and color 
images are shown for each fillet. 

Gaping score: 1 Gaping score: 4 Gaping score: 4.67 
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Figure 6 Example of two fillets that have the same gaping score (3) despite appearing quite different.  

 

 

Figure 7 The same fillet imaged flat onto the conveyor belt and placed on a section of plastic pipe. Note how 
the gap in the loin is clearly more visible in the images to the right.  

Gaps «closed» – appear shallow Large open gap 
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5 Analysis  

5.1 High-pass filtering 

In order to study only the shape of the gaps in the fillets, each 3D image was high-pass filtered. Before 

filtering, the height of each fillet was normalized so that the 99th percentile of height values 

corresponded to 20 mm. This was done to avoid the size of the fillet affecting the gaping estimation. 

Filtering was performed by subtracting a low-pass filtered (“smoothed”) version of the image from the 

original image. Low-pass filtering was performed by a Gaussian blur (Matlab function imgaussfilt()), 

using a filter kernel with sigma = 5 mm. A median filter was also tested (Matlab function medfilt2()), 

but as this type of filter gave very similar results while requiring more computational resources, the 

Gaussian blur was preferred.   

The effect of high-pass filtering is demonstrated in Figure 8. The upper left image is the original 3D 

image, with height information encoded as grayscale intensity, as shown by the color bar on the right 

of the image. The upper middle figure is the corresponding high-pass filtered image. The gaps appear 

as dark areas in this image. Note that there is also a dark “border” around the fillet. This is a filtering 

artifact, and the border was removed by first creating a binary segmentation of the fillet, separating 

fillet and background, and then eroding the fillet segment (Matlab function imerode()) using a disk-

shaped element with 4 mm radius. Values outside the eroded fillet segment were set to zero. The high-

pass filtered version of the image with the border removed is shown in the upper right part of Figure 

8. To further illustrate the effect of low- and high-pass filtering on the image, a “slice” from the images 

is shown in the bottom part of Figure 8. The position of the slice is indicated with a blue dotted line in 

the images in the upper part of the figure. 

Note that in some images the transition between loin and belly area was so sharp that it appeared 

similar to gaping in the high-pass filtered image. It should be possible to either a) high-pass filter the 

image in such a way that this slope is not included or b) to segment the image to exclude the slope. 

Implementing b) can be done using a priori information about the general shape of a fillet, and some 

preliminary testing was done along these lines, based on detection of maximum heights and maximum 

gradients for each horizontal image line. However, the method only worked for some of the fillets, and 

due to time constraints, it was not developed further. Thus, the results presented later in the report 

include the loin-belly slope artifact.  
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Figure 8 Demonstration of high-pass filtering of a 3D image. The profiles in the lower plot are taken at the 
position indicated with a blue dotted line in the images.  Note that the red and green lines in the 
lower plot are mostly overlapping. 
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5.2 Segmenting 

After a preliminary evaluation of the original and high-pass filtered 3D images, it was decided to only 

use the loin section of the fillet in the 3D image for estimation of gaping. The loin is both the part of 

the fillet with the highest commercial value and also the part where gaping occurs most frequently. 

Excluding belly and tail areas also helps in excluding noise and “false” gaping from the analysis.  

The loin area was identified by first detecting all parts of the fillet higher than 75 % of the maximum 

height. This area was then eroded with a radius of 2 mm and dilated with a radius of 12 mm. Gaping 

was then identified as areas in the high-pass filtered image with values below -0.7 mm (gap deeper 

than 0.7 mm). 

The segmenting of loin and gaping areas is illustrated in Figure 9. The original image is shown on the 

left. The middle image shows background as dark gray, fillet as light gray and loin as white. Within the 

loin area, the depth of the gaping areas is shown, encoded on a gray scale. The right image shows the 

loin area only (dark gray) with gaping areas indicated as black. 

 

Figure 9 Illustration of segmenting of loin and gaping areas. 

5.3 Image features 

Several feature “candidates” for gaping estimation were generated based on the 3D image and on the 

size, shape and depth of the gaping areas. These features were: 

• Maximum fillet height before normalization (mm) 

• Fillet area (cm2) and volume (cm3) 

• Fraction of loin classified as gaping area (0-100 %). 

• Area of individual gaping segments (mm2) - 50th, 85th and 100th percentile 

• Eccentricity of individual gaping segments (see Matlab function regionprops()) 

• Depth of gaping in all gaping segments combined (mm) – 5th, 25th, 50th, 75th and 95th 

percentiles. 
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• Average gaping depth over whole loin area (mm) 

Matlab code for gaping feature generation is listed in the appendix in section 10. The features were 

plotted against the manual gaping score for each fillet, and the Pearson correlation coefficient (R) was 

calculated for each. The scatter plots for each feature are shown in Figure 10, with the R value given 

in the title. Based on an evaluation of these, the following five features were chosen as inputs to a 

regression model for gaping: 

• Fraction of loin classified as gaping area 

• Gaping segment area, 85th percentile 

• Gaping segment eccentricity, 75th percentile 

• Gaping depth, 95th percentile 

• Gaping depth, average over loin 

 

Figure 10 Scatter plots of candidate features versus manual gaping scores. The features chosen for further 
analysis are indicated with red rounded rectangles. 
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5.4 PLS regression 

Partial least square (PLS) regression was used to estimate the gaping score for each fillet. The five 

image features listed in section 4.3 were used as inputs (“predictors”) and the average manual gaping 

score was used as output (“response”). Figure 11 shows mean squared error of prediction and 

explained variance, plotted against number of PLS components. Based on these, the number of 

components was set to 2.  

 

 
a) 

 
b) 

Figure 11 PLS regression statistics plotted against number of components. a) Mean squared error of gaping 
score, b) explained gaping score variance. 
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6 Results 

The results of PLS regression are shown in Figure 12, as a scatter plot with manual gaping score on the 

x-axis and gaping score estimated from 3D images on the y-axis. The coefficient of determination (R2) 

is 0.56 and the root mean square error of prediction (RMSEP) is 0.68. Clearly, there is a correlation 

between the manual score and the estimated score, but the accuracy of estimation is mediocre. The 

model is not seen sufficiently  accurate  to estimate the individual score values (0,1,2,3,4,5), but it may 

be accurate enough to separate the fillets into two classes; “low gaping” and “high gaping”. For 

example, if the fillets are separated into classes with gaping scores of either a) equal to 2 or below, or 

b) above 2, the estimated gaping score gives a 79 % correct classification. This may be sufficient for 

some applications. 

 

Figure 12 Prediction results from PLS regression. 
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7 Discussion 

The study described in this report was preliminary in nature, performed with limited time, resources 

and raw materials. The image analysis was done based on the initial ideas about relevant 

preprocessing, feature generation and regression. However, it is clearly possible to refine the analysis. 

We hope the methods described in this report can act as a starting point for anyone wanting to 

implement gaping estimation, and not as a definitive prescription for how this type of analysis should 

be done. 

The gaping estimation results are mediocre at best. However, they show that it is at least possible to 

calculate an estimate that is reasonably well correlated with the manual gaping score. Note also that 

the gaping score is subjective, with its own inherent variance, and that this may have contributed to 

the poor gaping estimation. However, the gaping estimation results may be sufficiently accurate to 

separate the fillets into two classes with low and high gaping. Similar classification (with a low number 

of classes) is often used in seafood industry, for example the “superior”, “ordinary” and “production” 

classes used in salmon aquaculture (Norsk bransjestandard, 1999). 

The image examples in Figure 6 and Figure 7 illustrate that the fillet gaping is not always “exposed” 

and clearly visible to the 3D camera when the fillet is placed flat on a conveyor belt. This is probably 

also the main reason for the poor performance of the gaping estimation. A possible improvement to 

the imaging setup could be to image the fillets above a “bump” in the conveyor belt. This is illustrated 

in Figure 13. The effect of this bump would be similar to that of running a hand beneath the fillet, and 

will probably improve the gaping estimation significantly. The radius of the bump should be on the 

order of a few centimeter.  

The Gocator 3D camera used in the experiments is a “smart sensor”, meaning that the camera also 

includes a computer that can process the data in real time. The algorithms for measurement of gaping 

could possibly be implemented directly on the camera using the Gocator development kit (“GDK”). The 

camera can also output digital signals for controlling sorting mechanisms directly. Thus, it could be 

possible to implement a sorting system for gaping based only on the Gocator camera, a conveyor belt 

and a sorting mechanism. 

 

Figure 13 Sketch illustrating a possible concept for better imaging of fillet gaping: Imaging over a conveyor belt 
"bump". 
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8 Conclusions 

3D imaging of fish fillets can create accurate images of the fillet shape, and by filtering these images, 

it is possible to separate small gaps in the fillet from the overall shape of the fillet. However, the gaps 

are not always exposed when the fillet is placed flat on a conveyor belt, and subsequently, they are 

not always clearly seen in the 3D images. Using images taken on a flat conveyor belt produces mediocre 

estimates of gaping scores, but the method may be accurate enough to separate fillets into low- and 

high-gaping classes. A possible improvement to the method is to perform imaging above a small 

“bump” in the conveyor belt to better expose the gaping. With this improvement, 3D imaging is seen 

as a promising method for automated, real-time quantification of gaping. 

 

9 Main results 

• 3D imaging can reveal detailed information about fillet shape. 

• However, fillets on a flat conveyer belt make it difficult to reveal all gapings. 

• Introducing a bump on the conveyer belt can help revealing all gapings defects. 

 

10 Deliveries 

Minutes from the two referendce group meeting has been prepared and submitted to FHF. The last 

delivery is this report. 

Skjelvareid, M.H. & K. Heia (2018). Automatic quantification of gaping in fish fillets using 3D imaging - 

Preliminary results for haddock fillets - Final report. Report 34/2018, Nofima, Tromsø. 

 

11 Acknowledgements 

Thanks to Torbjørn Tobiassen for supplying the haddock samples used in this project. Thanks to Sjurdur 

Joensen and Tatiana Ageeva for help with handling and evaluation of the fillets, and to Kate Washburn 

and Heidi Nilsen for reviewing the report. The project was funded by Fiskeri- og havbruksnæringens 

forskningsfond (project number 901507). 



 

16 
 

12 References 

Akse, L., S. Joensen, T. Tobiassen, G. Martinsen, K.Ø. Midling & M.S.W Breiland (2010). Torsk kjølt i 

RSW – råstoffkvalitet til filet og salting. Report 34/2010, Nofima, Tromsø. 

Sture, Ø., E.R. Øye, A. Skavhaug & J.R.A.  Mathiassen (2016). 3D machine vision system for quality 

grading of Atlantic salmon. Comput. Electron. Agric., 123, pp. 142–148, 

doi:10.1016/J.COMPAG.2016.02.020. 

Balaban, M.O., G.F. Ünal Şengör, M.G. Soriano & E.G. Ruiz (2011). Quantification of Gaping, Bruising, 

and Blood Spots in Salmon Fillets Using Image Analysis. Journal Food Sci., 76, pp. E291–E297, 

doi:10.1111/j.1750-3841.2011.02060.x. 

Mery, D., I. Lillo, H. Loebel, V. Riffo, A. Soto, A. Cipriano & J.M. Aguilera (2011). Automated fish bone 

detection using X-ray imaging. Journal Food Eng., 105, pp. 485–492, 

doi:10.1016/j.jfoodeng.2011.03.007. 

Skjelvareid, M. H.; Heia, K.; Olsen, S. H.; Stormo, S. K. Detection of blood in fish muscle by constrained 

spectral unmixing of hyperspectral images. Journal Food Eng., 212, pp. 252–261, 

doi:10.1016/j.jfoodeng.2017.05.029. 

Norsk bransjestandard for fisk. Kvalitetsgradering av oppdrettet laks (NBS 10-01) (1999). 



 

i 
 

Appendix: Matlab code for calculating gaping-related features 

function [features,featureLabels] = 

calcFilletGapingFeatures(im,segIm,hpfIm,meta) 
% calcFilletGapingFeatures - calc. gaping features based on 3D image 
% 
%   Usage: 
%   metric = calcFilletGapingFeatures(im,segIm,imhpf,meta,...) 
% 
%   Input: 
%   im          -   original 3D image 
%   segIm       -   binary image indicating fillet and background 
%   hpfIm       -   high-pass filtered image 
%   meta        -   metadata structure for original image 
% 
%   Output: 
%   features        -   vector of features 
%   featureLabels   -   cell array of feature labels 
% 
%   2018-06-06 Martin H. Skjelvareid 

  
%% Parameters 
normHeight = 20;            % "Standard" height, used for normalization 
maxHeightPercentile = 99;   % Percentile for estimating maximum height 
gapingThreshold = -0.7;     % Threshold for detecting gaping in HPF image  
loinHeightThreshold = 0.75; % Threshold for original detection of loin area 
erodeRadLoinPix = 5;        % Erode radius used in loin segmenting 
dilateRadLoinPix = 30;      % Dilate radius used in loin segmenting 
erodeRadPixNoise = 1;       % Erode radius for cleaning up detected gaping 
dilateRadGapingArea = 2;    % Dilate radius for gaping areas 

  
%% Segment loin area 
maxHeight = prctile(im(segIm),maxHeightPercentile); 
loinRaw = im > loinHeightThreshold*maxHeight; 
loinArea = imerode(loinRaw,strel('disk',erodeRadLoinPix)); 
loinArea = imdilate(loinArea,strel('disk',dilateRadLoinPix)); 
loinArea = bwareafilt(loinArea,1);      % Keep only largest area  
loinArea = imfill(loinArea,'holes');    % Fill possible holes 

  
%% Identify gaping areas 
gapingAreaRaw = hpfIm < gapingThreshold; 
gapingAreaRaw = imerode(gapingAreaRaw,strel('disk',erodeRadPixNoise)); 
gapingAreaRaw = imdilate(gapingAreaRaw,strel('disk',dilateRadGapingArea)); 
gapingArea = gapingAreaRaw & loinArea & segIm; 

  
%% Limit non-zero pixels in HPF image to gaping areas in loin only 
imGaping = hpfIm; 
imGaping(~gapingArea) = 0; 

  
%% Normalize to standard height 
imGaping = imGaping*(normHeight/maxHeight); 

  
%% Calculate features 
% Features relating to fillet dimensions 
areaPerPixel = meta.xRes*meta.yRes; 
filletAreaCm2 = nnz(segIm)*areaPerPixel/100; 
filletVolumeCm3 = sum(im(segIm))*areaPerPixel/1000; 

  
% Features relating to gaping area 
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gapingAreaFraction = nnz(gapingArea)/nnz(loinArea); 
s = regionprops(gapingArea,'Area','Eccentricity');    
gapingSegmentArea = cat(1,s.Area); 
gapingSegmentAreaPctl = prctile(gapingSegmentArea,[50 85 

100])*areaPerPixel; 
gapingSegmentEcc = cat(1,s.Eccentricity); 
gapingSegmentEccPctl = prctile(gapingSegmentEcc,[50 75 100]); 

  
% Features relating to gaping depth 
gapingDepthPctl = prctile(-imGaping(gapingArea),[5 25 50 75 95]); 
avGapingDepthLoin = sum(-imGaping(gapingArea))/nnz(loinArea); 

  
%% Collect features in output vector and write labels 
featureLabels = {... 
                'Maximum height (mm)'..., 
                'Fillet area (cm2)'..., 
                'Fillet volume (cm3)'..., 
                'Gaping area fraction'..., 
                'Gap. seg. area median (mm2)'..., 
                'Gap. seg. area 85th percentile (mm2)'..., 
                'Gap. seg. area maximum (mm2)'..., 
                'Gap. seg. ecc. median (mm2)'..., 
                'Gap. seg. ecc. 75th percentile (mm2)'..., 
                'Gap. seg. ecc. maximum (mm2)'..., 
                'Gap. depth 5th percentile (mm)'..., 
                'Gap. depth 25th percentile (mm)'..., 
                'Gap. depth 50th percentile (mm)'..., 
                'Gap. depth 75th percentile (mm)'..., 
                'Gap. depth 95th percentile (mm)'..., 
                'Gap. depth, av. over loin (mm)'..., 
                }; 

  
features = [... 
            maxHeight;... 
            filletAreaCm2;... 
            filletVolumeCm3;... 
            gapingAreaFraction;... 
            gapingSegmentAreaPctl(:);... 
            gapingSegmentEccPctl(:);... 
            gapingDepthPctl(:);... 
            avGapingDepthLoin;... 
           ]; 
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